skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petters, Sarah_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aerosol chemistry has broad relevance for climate and global public health. The role of interfacial phenomena in condensed‐phase aerosol reactions remains poorly understood. In this work, liquid drop formalisms are coupled with high‐pressure transition state theory to formulate an expression for predicting the size‐dependence of aerosol reaction rates and viscosity. Insights from high‐pressure synthesis studies suggest that accretion and cyclization reactions are accelerated in 3–10‐nm particles smaller than 10 nm. Reactions of peroxide, epoxide, furanoid, aldol, and carbonyl functional groups are accelerated by up to tenfold. Effective rate enhancements are ranked as: cycloadditions >> aldol reactions > epoxide reactions > Baeyer‐Villiger oxidation >> imidazole formation (which is inhibited). Some reactions are enabled by the elevated pressure in particles. Viscosity increases for organic liquids but decreases for viscous or solid particles. Results suggest that internal pressure is an important consideration in studies of the physics and chemical evolution of nanoparticles. 
    more » « less